Rapid turnover of phosphatidylinositol-4,5-bisphosphate in insulin-secreting cells mediated by Ca2+ and the ATP-to-ADP ratio.

نویسندگان

  • Sophia Thore
  • Anne Wuttke
  • Anders Tengholm
چکیده

Phosphatidylinositol-4,5-bisphosphate (PIP(2)) is important for a variety of cellular processes as a precursor for second messengers and by regulating ion channels, the cytoskeleton, and vesicle traffic in many types of cells, including insulin-secreting beta-cells. Here, we applied evanescent wave microscopy and the PIP(2)-binding pleckstrin homology domain from phospholipase C (PLC)-delta fused to the green fluorescent protein to characterize the regulation of plasma membrane PIP(2) in individual insulin-secreting MIN6 beta-cells. Elevation of the glucose concentration from 3 to 11 mmol/l evoked antisynchronous oscillations of [PIP(2)] and cytoplasmic Ca(2+)concentration, consistent with PLC being periodically activated by the voltage-dependent Ca(2+) influx. The effect of adenine nucleotides on [PIP(2)] was studied in cells permeabilized with alpha-toxin. ATP dose- dependently stimulated PIP(2) synthesis with half-maximal effect at 300 mumol/l. Omission of the nucleotide resulted in rapid loss of PIP(2) with t(1/2) < 40 s. ADP also stimulated PIP(2) formation, but this effect reflected local ATP formation and was prevented by the adenylate kinase inhibitor diadenosine-pentaphosphate. The ATP-induced PIP(2) synthesis was counteracted by the ADP analog adenosine-5'-O-2-thiodiphosphate. We conclude that plasma membrane PIP(2) is dynamically regulated by intracellular Ca(2+) and the ATP-to-ADP ratio in insulin-secreting cells. The rapid turnover allows maintenance of PIP(2) levels while generating second messengers of critical importance for insulin secretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feedback activation of phospholipase C via intracellular mobilization and store-operated influx of Ca2+ in insulin-secreting beta-cells.

Phospholipase C (PLC) regulates various cellular processes by catalyzing the formation of inositol-1,4,5-trisphosphate (IP3) and diacylglycerol from phosphatidylinositol-4,5-bisphosphate (PIP2). Here, we have investigated the influence of Ca2+ on receptor-triggered PLC activity in individual insulin-secreting beta-cells. Evanescent wave microscopy was used to record PLC activity using green flu...

متن کامل

Insulin-stimulated phosphoinositide metabolism in isolated fat cells.

Treatment of isolated fat cells with insulin produced increases of up to 4.8-fold in the incorporation of [3H]inositol into phosphatidylinositol. This effect of insulin was both time- and dose-dependent with half-maximal stimulation at 30 microunits/ml of insulin. Insulin increased the labeling of phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate but not phosphatidylinositol 4-mono...

متن کامل

Presynaptic inhibition via a phospholipase C- and phosphatidylinositol bisphosphate-dependent regulation of neuronal Ca2+ channels.

Presynaptic inhibition of transmitter release is commonly mediated by a direct interaction between G protein betagamma subunits and voltage-activated Ca2+ channels. To search for an alternative pathway, the mechanisms by which presynaptic bradykinin receptors mediate an inhibition of noradrenaline release from rat superior cervical ganglion neurons were investigated. The peptide reduced noradre...

متن کامل

Vesicle Docking Is a Key Target of Local PI(4,5)P2 Metabolism in the Secretory Pathway of INS-1 Cells

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) signaling is transient and spatially confined in live cells. How this pattern of signaling regulates transmitter release and hormone secretion has not been addressed. We devised an optogenetic approach to control PI(4,5)P2 levels in time and space in insulin-secreting cells. Combining this approach with total internal reflection fluorescence mic...

متن کامل

Thyroliberin stimulates rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate by a phosphodiesterase in rat mammotropic pituitary cells. Evidence for an early Ca2+-independent action.

Thyrotropin-releasing hormone (TRH; thyroliberin) stimulated rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] by a phosphodiesterase (phospholipase C) in GH3 cells, a prolactin-secreting rat pituitary tumour cell line. TRH caused a rapid decrease in the level of PtdIns(4,5)P2 to 60% of control and stimulated a marked transient increase in inositol 1,4,5-trisphosphate, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 56 3  شماره 

صفحات  -

تاریخ انتشار 2007